Example



0 
dθ

2 + cos θ
=

(⎜)



|z|=1 
dz

iz

2 + 1

2
(z + 1/z)
=

(⎜)



|z|=1 
2 dz

i(z2 + 4 z + 1)
=
2

i

(⎜)



|z|=1 
1

z2 + 4 z + 1
dz
=
2

i
i
Res
1

z2 + 4 z + 1
;ai
.
(1)
The roots of the equation z2 + 4 z + 1 = 0 are −2 ±√3 of which only −2+√3 is inside the unit circle so

=
2

i
i Res
1

z2 + 4 z + 1
;−2 + √3
=
1

2 z + 4
|z = −2 + √3
=

√3
.
(2)
Note that we used the short-cut to find a residue at a first order pole.
Example



0 
cos6 θdθ.
(Solution)



0 
cos6 θdθ
=

(⎜)



|z|=1 

1

2
(z + 1

z
)
6

 
d z

iz
=
1

64i

(⎜)



|z|=1 
(1 + z2)6

z7
dz
=
1

64i

(⎜)



|z|=1 
z12 + 6 z10 + 15 z8 + 20 z6 + 15 z4 + 6 z2 + 1

z7
dz
=
1

64i

…+
(⎜)



|z|=1 
20 dz

z
+ …
=
1

64i
20
(⎜)



|z|=1 
dz

z
=
1

64i
×20 ×2πi
=
5

8
π.
(3)
Example 1:



−∞ 
dx

1 + x2
.
The integrand satisfies the above two conditions (the difference in the polynomial order is 2 and z = ±i are not on the real axis. Note that only z = i is in the upper half plane.) so




−∞ 
dx

1 + x2
=
i Res( 1

1 + z2
;i)
=
i 1

2 z
|z=i
=
π.
(4)
Of course this result can be also obtained by directly integrating 1/(1 + x2) (=arctanx).
Example 2:



−∞ 
dx

1 + x4
dx.
(5)
The difference in degree of P(x)/Q(x) is 4 and all the zeros to 1 + z4 = 0 are off the real axis. The zeros to z4 + 1 = 0 are
z = eπi/4 + n πi/2        n=0,1,2,3,
of which z's for n = 0 and n = 1 are in the upper half plane.




−∞ 
dx

1 + x4
=
i

upper half plane 
Res( 1

z4+1
;ai)
=
i
Res( 1

z4 + 1
; eπi/4) +Res( 1

z4 + 1
; ei/4)
=
i
1

4z3
|z=eπi/4 + 1

4z3
|z=ei/4
=
i

4

1

ei/4
+ 1

eπi/4

=
πi

2
(e−3πi/4 + e−π/4 i)
=
πi

2
( −√2i )
=
π

√2
.
(6)
Example 3:




−∞ 
x2 dx

1 + x4
=
i

upper half plane 
Res( z2

z4 + 1
;ai)
=
i
z2

4 z3
|z=exp(πi/4) + z2

4 z3
|z=exp(3πi/4)
=
πi

2

1

z
|z=exp(πi/4) + 1

z
|z=exp(3πi/4)
=
πi

2
(e−πi/4 + e−3πi/4)
=
πi

2
( −√2 i)
=
π

√2
.
(7)



File translated from TEX by TTH, version 4.03.
On 18 Jan 2021, 22:02.