1. Expand the following functions in the given region (first two terms should suffice for (b)).

(a) 1

z2 − 1
    |z + 1| > 2,       (b) 1

1 − cos z
    0 < |z| < 2 π.


2. Is the following logic correct ?
Since i2 = −1,
i =

 

−1
 
(take the square roots on the both sides). Also since (−i)2 = −1, it follows
i =

 

−1
 
.
Therefore, i = −i from which it follows 2 i = 0, i.e. i = 0 !!!


3. Evaluate

(⎜)



C 
ez

z2 + 1
dz
where C is |zi| = 1 ccw.




4.

    (a) What is the fundamental theorem of algebra ? Why is it so important ?
    (b) If the real part of an analytical function is given as
    u = x2xy2
    find the imaginary part.


5. Evaluate the following integrals.
(a)


−∞ 
cos x

x2 − 2 x + 2
dx
(b)



0 
dθ

4 + cos θ
6. Evaluate



0 
x

x2 + a2
dx
by considering

(⎜)

z

(z2 + a2)
dz
along the contour shown below:
7.

    (a) What is the streamline ? How can one find the streamline ?
    (b) What is the residue of
    cos z

    z5
    at z = 0 ?


SOLUTION


1. (a) Note that
1

z2 − 1
= 1

z − 1
1

z + 1
.
Since the region (|z + 1| > 2) contains both singular points (1 and -1), the Laurent series is required.
1/(z + 1) is already in such a format so leave it as it is.

1

z − 1
=
1

(z + 1) − 2
(1)
=
1

(z + 1) (1 − 2

z + 1
)
(2)
=
1

z + 1

1 + ( 2

z + 1
) + ( 2

z + 1
)2 +( 2

z + 1
)3 + …
(3)
so

1

z2−1
= 1

(z + 1)2

1 + ( 2

z + 1
) + ( 2

z + 1
)2 +( 2

z + 1
)3 + …
.
(4)


(b) As
cosz = 1 − z2

2!
+ z4

4!
− …,

1 − cosz  ∼  z2

2!
       as     z → 0.
so

1

1−cosz
=

z2

2


1−cosz
1


z2

2

(5)
=
g(z) 1


z2

2

(6)
=

g(0)+g′(0)z + g"(0)2

2!
z2 + …
1


z2

2

(7)
By long division or direct calculation,
g(0)=1,     g′(0)=0,     g"(0)= 1

12
, …
so
1

1−cosz
=
1+ z2

12
+ z4

240
+…
2

z2
.


2.


 

−1
 
=

 

1 eπi/2 + 2 n πi
 
= eπi /2 en πi = ±i.


3.

(⎜)

ez

(zi)(z+i)
dz
=

(⎜)

g(z)

zi
dz
(8)
=
g(0)
(9)
=
2 πi ei

2i
(10)
=
πei
(11)
=
π(cos1 + i sin1).
(12)
where
g(z) ≡ ez

z+i
.


4.
(a) An algebraic equation has at least one zero on the complex plane. It is significant as all the roots are expressed by a complex number.


(b) Note that (x+i y)2 = x2y2 + 2 x y i, come up with
u = 2 x yy
so that
u + i v = x2y2x + i (2 xyy ) = (x+iy)2 − (x+iy) = z2z.


5 (a) The zeroes of x2−2x+2=0 are 1±i of which 1+i is in the upper half plane.

I
=




−∞ 
eix

x2−2x+2
dx
(13)
=

i Res ( eiz

z2−2z+2
;1+i)
(14)
=

i ei (1+i)

2i

(15)
=
ℜ(πei−1)
(16)
=

π

e
(cos1 + i sin1)
(17)
=
π

e
cos1.
(18)
(b)
I
=

(⎜)

dz

i z

4 + (z + 1/z)/2
(19)
=
2

i

(⎜)

dz

z2 + 8 z + 1
(20)
=
2

i
i Residue( 1

z2 + 8 z + 1
;−4+

 

15
 
)
(21)
=
4 π 1

−8 + 2

 

15
 
+ 8
(22)
=
2 π




15
.
(23)


6

(⎜)

=
i (Res( a eπi /2 )+Res( a ei /2 ))
(24)
=
i
a eπi/4

2 a i
+a e3 πi/4

2 a (−i)

(25)
=
2 πia

2 a i
(eπi /4e3 πi/4)
(26)
=
  ⎛


2

a
 
π.
(27)
On the other hand,



I 
=
I
(28)



II 
=
0
(29)



III 
=

0

 
eπix

x2+a2
dx
(30)
=



0 
(−1) √x

x2+a2
dx
(31)
=



0 
x

x2+a2
dx
(32)
=
I
(33)



IV 
=
0,
(34)
so
2I =   ⎛


2

a
 
π
from which
I = 1

2
  ⎛


2

a
 
π.


7. (a) dx : dy = u: v. Ψ = const.
(b)
cosz

z5
=
1− z2/2! + z4/4! − z6/6!+ …

z5
(35)
=
…+ 1

4!
1

z
− …
(36)
So the residue is 1/4!.



File translated from TEX by TTH, version 4.03.
On 25 Feb 2023, 15:12.