
23.2

1. Problem Evaluate the following by expressing them in terms of real line integrals and then evaluating
those integrals.

(a)
∫
C
|z|2 dz, where C is a straight line from z = 0 to z = 1 + i.

(d)
∫
C
dz/z, where C consists of three straight-line segments: from z = 1 to z = 1 − i, from z = 1 − i to

z = −1− i, and then from z = −1− i to z = −1

(f)
∫
C
(Re z) dz, where C is a clockwise quarter circle from z = 3i to z = 3 centered at z = 0.

(g)
∫
C
(Im z) dz, where C is a straight line from z = i to z = 2 + 2i.

Solution
(a) Note that this is a path-dependent integral.∫

|z|2dz =

∫
(x2 + y2)(dx+ idy),

where x = y and dx = dy so

I =

∫ 1

0

2x2(1 + i)dx =
2(1 + i)

3
.

(d) The integral path can be modified to the one along a semicircle of |z| = 1 from θ = 0 to θ = −π
(clockwise) as one can choose a closed loop that contains z = 1 and z = −1 but not z = 0 (singular point of
1/z) so that f(z) = 1/z is analytic on and inside such a loop. Thus,

∫
1

z
dz = [ln z]

exp(−πi)
1 (1)

= ln(e−πi)− ln 1 (2)

= −πi− 0 (3)

= −πi . (4)

Note that this integral is independent on the integral path.

(f) This integral is path-dependent as
f(z) = ℜz = (z + z̄)/2

is NOT analytic !. Along the path, one can set

z = 3eiθ (5)

dz = 3ieiθdθ (6)

x = 3 cos θ (7)

so

∫
C

x(dx+ idy) =

∫ 0

π/2

(3 cos θ)(3ieiθ)dθ (8)

= 9i

∫ 0

π/2

cos θ(cos θ + i sin θ)dθ (9)

= −9πi

4
+

9

2
. (10)



(g) This is a path dependent integral as f(z) = y is not analytic. Along the path from z = i to z = 2 + 2i
one can set

x = 2t (11)

y = 1 + t 0 < t < 1 (12)

so that

z = x+ iy (13)

= 2t+ (1 + t)i (14)

= i+ (2 + i)t (15)

and

dz = (2 + i)dt (16)

so ∫
C

y(dx+ idy) =

∫ 1

0

(1 + t)(2 + i)dt (17)

=
3

2
(2 + i). (18)

2. Consider

I =

∫
C

z̄ dz,

where the initial and final points of C are z = 0 and z = 1 + i, respectively. Show that the integral is path
independent by choosing two different paths and obtaining different values for I.
Solution
Since z̄ is not analytic (see your class note for why), its integral is path-dependent.

23.3

1.Problem According to Example 2, ∫
C

dz

z2
= 0 (19)

where C is a counterclockwise circle of radius R, centered at the origin. Yet f (z) = 1/z2 is not analytic
within C, it is singular at z = 0. Explain why this result does not violate Cauchy’s theorem.
Solution
Cauchy’s theorem is a sufficient but NOT necessary condition for∮

C

f(z)dz = 0.

i.e. the contour integral being 0 does not necessary imply that the function, f(z), is regular on and inside
the contour although the converse is true (Cauchy’s theorem !).

2.Problem Consider I =
∫
C
dz/z, where C is the counterclockwise unit circle, and the assertion that

I = 0, from Cauchy’s theorem, because f (z) = 1/z is analytic in the domain D containing C. (See the
accompanying figure.) Yet we show in Example 2 that I = 2πi. Explain the apparent contradiction.
Solution
Note that the domain D is not singly-connected (there is a hole) so Cauchy’s theorem does not apply.



4.Problem Let C1, C2, C3 be the following simple closed curves:
C1 : |z| = 1, counterclockwise
C2 : |z| = 1, clockwise
C3 : thesquarewithverticesat1− i, 1 + i,−1 + i,−1− i, counterclockwise.

Evaluate each of the following integrals using Cauchy’s theorem if applicable and partial fractions if necessary.

(a)
∫
C1

Re zdz

(d)
∫
C3

dz
z2−3

(g)
∫
C2

dz
z(z+5)

(j)
∫
C3

dz
|z|

Solution
(a) Along C1, one can set z = eiθ, dz = ieiθdθ, 0 < θ < 2π, x = cos θ and y = sin θ. So

∫ 2π

0

cos θieiθdθ = i

∫ 2π

0

cos θ(cos θ + i sin θ)dθ (20)

= πi. (21)

(d) Note that both of the singular points, z =
√
3 and z = −

√
3, are outside the contour, C3 so

∫
= 0.

(g) Partial fraction of 1/(z2+5z) is (1/z−1/(z+5))/5 so z = 0 is the only singular point inside C2. Thereby,

∮
C2

dz

z(z + 5)
=

1

5

∮
C2

dz

z
− 1

5

∮
C2

dz

z + 5
(22)

= −2πi

5
− 0 (23)

= =
2πi

5
. (24)

(j) From −1− i to 1− i, y = −1, dy = 0 and x varies from -1 to 1 so∫
dz

|z|
=

∫ 1

−1

dx√
x2 + 1

.

From 1− i to 1 + i, x = 1, dx = 0 and y varies from -1 to 1 so∫
dz

|z|
=

∫ 1

−1

dy√
y2 + 1

.

From 1 + i to −1 + i, y = 1, dy = 0 and y varies from 1 to -1 so∫
dz

|z|
=

∫ −1

1

dx√
x2 + 1

.

From −1 + i to −1− i, x = −1, dx = 0 and y varies from 1 to -1 so∫
dz

|z|
=

∫ −1

1

dy√
y2 + 1

.

Adding the four integrals above amounts to 0 (not because of Cauchy’s theorem !!)



5.Problem Can we use path deformation to obtain∫
C3

z̄dz =

∫
C1

z̄dz, (25)

where C1 and C3 are defined in Exercise 4 ? Explain.
Solution
The formula, ∮

C1

f(z)dz =

∮
C2

f(z)dz (26)

is true if f(z) has isolated singular points. z̄ is singular everywhere except for z = 0. So this is NOT TRUE.

Here is a direct approach.
Along C1:

x = cos θ, y = sin θ

so
dx = − sin θ, dy = cos θ

∮
(x− iy)(dx+ idy) =

∮
(cos θ − i sin θ)(− sin θ + i cos θ)dθ =

∫ 2π

0

idθ = 2πi.

Along C3:

1. From z = −1− i to z = 1− i, y = −1, dy = 0, x varies from -1 to 1. So∫
z̄dz =

∫ 1

−1

(x+ i)dx = 2i.

2. From z = 1− i to z = 1 + i, x = 1, dx = 0, y varies from -1 to 1. So∫
z̄dz =

∫ 1

−1

(1− iy)idy = 2i.

3. From z = 1 + i to z = −1 + i, y = 1, dy = 0, x varies from 1 to -1. so∫
z̄dz =

∫ −1

1

(x− i)idx = 2i.

4. From z = −1 + i to z = −1− i, x = −1, dx = 0, y varies from 1 to -1. so∫
z̄dz =

∫ −1

1

(−1− iy)idy = 2i.

So ∮
C3

z̄dz = 8i.

6.Problem Evaluate
∫
C
z20dz, where C is the path

(a) y = x− x3 from x = 0 to x = 1



Solution
(a) As z20 is analytic, its integration is independent of the path. Thereby, take the straight line from (0,0)
to (1,0) instead of the given curve. ∫

C

z20dz =

∫ 1

0

x20dx =
1

21
.

8. Problem (Path deformation in multiply-connected domain) Show that if f (z) is analytic in the shaded
region between and on the contours C,C1, C2 (see the accompanying figure), then∫

C

f (z) dz =

∫
C1

f (z) dz +

∫
C2

f (z) dz. (27)

You may use the result stated in Exercise 3. NOTE: More generally,∫
C

f (z) dz =

∫
C1

f (z) dz + · · ·+
∫
Cn

f (z) dz (28)

if C1, . . . , Cn are non-intersecting counterclockwise closed contours within C, and f is analytic between and
on C,C1, . . . , Cn.
Solution
Shown in class.

9.Problem Evaluate the following integrals, where in each case C is the circle |z| = 3, counterclockwise.

(a)
∫
C

dz
z(z−1)

(d)
∫
C

zdz
z2−3z+2

Solution
(a) ∮

dz

z(z − 1)
=

∮
dz

z − 1
−
∮

dz

z
= 2πi− 2πi = 0.

(d) ∮
zdz

(z − 1)(z − 2)
= −

∮
dz

z − 1
+ 2

∮
dz

z − 2
= −2πi+ 2(2πi) = 2πi.

23.4

3. Problem
Use the fundamental theorem to evaluate each of the following.

(a)
∫ i

0
z dz

(b)
∫ i

−i
z4 dz

(c)
∫ −1−2i

4
(e−z − 3z2) dz

(d)
∫ 0

i
cos 3z dz

(e)
∫ 1+i

1−i
zez dz

(f)
∫ −i

4
z sin z dz

(g)
∫ 3i

0
zez

2

dz

(h)
∫ 1+2i

0
sin2 z dz



(i)
∫ 3

−2i
z cos 2z dz

(j)
∫ 2+i

i
cosh 3z dz

(k)
∫ i

0
cos3 z dz

(l)
∫ 1

i
z2e2z

3

dz

Solution
(a) ∫ i

0

zdz =

[
z2

2

]i
0

= −1/2.

(d) ∫ 0

i

cos 3zdz =

[
sin 3z

3

]0
i

= − sin 3i

3
.

(g) ∫ 3i

0

zez
2

dz =

[
ez

2

2

]3i

0

=
1

2e9
− 1

2
.

4. Problem
Determine all possible values of

I =

∫ 1+i

1−i

dz

z(z − 1)
.

Solution Note that

lnA− lnB = ln
A

B
(29)

is also true for complex numbers.

I =

∫ 1+i

1−i

dz

z − 1
−
∫ 1+i

1−i

dz

z
(30)

= [ln(z − 1)]
1+i
1−i − [ln z]

1+i
1−i (31)

= ln i− ln(−i)− (ln(1 + i) + ln(1− i)) (32)

= ln

(
i

−i

)
− ln

(
1 + i

1− i

)
(33)

= ln(−1)− ln(i) (34)

= ln

(
−1

i

)
(35)

= ln(i) (36)

=
(π
2
+ 2nπ

)
i, n = 0,±1,±2 . . . (37)

23.5

1. Problem Evaluate each integral, where C is the counterclockwise circle |z| = 3. Use Cauchy’s integral
formula or its extension.



(a)

∮
C

cos z

z
dz(d)

∮
C

z2 − 1

z2 + 1
ez dz(g)

∮
C

sinh 3z

(z2 + 1)2
dz(i)

∮
C

ez
2

z cos (z/2)
dz(j)

∮
C

z

(z + i)(z2 + 1)
dz

Solution
(a) I = 2πi cos z|z=0 = 2πi.

(d) Note that
1

z2 + 1
=

1

2i

(
1

z − i
− 1

z + i

)
(38)

so

I =

∮
1

2i

(
z2 − 1

z − i
ez − z2 − 1

z + i
ez
)
dz (39)

=
[
πi(z2 − 1)ez

]
z=i

−
[
πi(z2 − 1)ez

]
z=−i

(40)

= πi(i2 − 1)ei − πi((−i)2 − 1)e−i (41)

= −4πi sin 1. (42)

(g)

I =

∮
C1

sinh 3zdz

(z + i)2(z − i)2
+

∮
C2

sinh 3zdz

(z + i)2(z − i)2
(43)

=
2πi

1!

d

dz

sinh 3z

(z + i)2
|z=i +

2πi

1!

d

dz

sinh 3z

(z − i)2
|z=−i (44)

= 2πi(−3 cos 3

4
+

sin 3

4
) + 2πi(−3 cos 3

4
+

sin 3

4
) (45)

= πi(sin 3− 3 cos 3). (46)

where C1 is a little circle around z = i and C2 is a little circle around z = −i.

(j) Note that

f(z) =
z

(z + i)2(z − i)
(47)

∮
C

z

(z + i)2(z − i)
dz =

∮
C1

g(z)

z − i
dz +

∮
C2

h(z)

(z + i)2
dz (48)

= 2πig(i) + 2πih′(i) (49)

= 2πi
i

(2i)2
+ 2πi

−i

(−2i)2
(50)

= 0 (51)

where g(z) = z/(z + i)2, h(z) = z/(z − i), C1 is a loop that encircles z = i and C2 is a loop that encircles
z = −i.

2.
Problem (Important little integral) In Section 23.3 we show that∮

C

(z − a)n dz =

{
2πi (n = −1)
0 (n ̸= −1),

(2.1)



where n is any integer and a is within the contour C. Derive (2.1) using Cauchy’s theorem, the Cauchy
integral formula, and the generalized Cauchy integral formula.

Solution
If n ≥ 0, I = 0 by the Cauchy’s theorem. If n = −1, I = 2πi(1)|z=a = 2πi by the Cauchy’s integral formula.
If n < −1,

I =
2πi

(n− 1)!

dn−1

dzn−1
(1)|z=a = 0.

3. Problem (a) Show from (22) that if C is a circle of radius ρ with center at z, f(z) is analytic inside and
on C, and M is the maximum value of |f(z)| on C, then

∣∣∣f (n)(z)
∣∣∣ ≤ n!M

ρn
. (3.1)

(b) (Liouville’s theorem) Use (3.1) to prove Liouville’s theorem: If f is entire (i.e., analytic for all finite
z) and bounded for all z, then f is a constant.
(c) Since f(z) = sin z is entire and not a constant, it must not be bounded (according to Liouville’s theorem).
Demonstrate that, in fact, it is not bounded.
(d) (Fundamental theorem of algebra) Use Liouville’s theorem to prove the Fundamental theorem of
algebra: if P (z) is a polynomial function of z, of degree 1 or greater,

P (z) = anz
n + an−1z

n−1 + · · ·+ a0 (an ̸= 0)

then P (z) = 0 has at least one root. HINT: Suppose that P (z) is nonzero everywhere. Then f(z) = 1/P (z)
is analytic everywhere and is bounded.
Solution
(a) According to eq.(22),

f (n)(a) =
n!

2πi

∮
f(z)

(z − a)n+1
dz (3.2)

so

|f (n)(a)| ≤ n!

2π

∮
|f(z)|

|z − a|n+1
dz (3.3)

≤ n!

2π

M

ρn+1

∮
|dz| (3.4)

=
n!

2π

M

ρn+1
2πρ (3.5)

=
n!M

ρ
(3.6)

(b) Let n = 1, then |f ′(z)| ≤ M
ρ . Because ρ can be arbitrarily large, it follows that f ′(z) can be arbitrarily

small, i.e., f ′(z) = 0 for each z so that f(z) is a constant.

(c) For example, | sin yi| → ∞ as y → ∞.

(d) Will be shown in class.


