ME5332 MIDTERM EXAMINATION
4-5:30 pm, March 22, 2021, Open book/note


  1. Obtain the closed form for
    sin θ+ sin 2θ+sin 3θ+…+sin (n−1)θ.
  2. The imaginary part of an analytic function, f(z), is given by
    v = sin(x)  (−ey+ey).
    1. Find u.
    2. Find f(z) as a function of z alone.
  3. Evaluate the following integral




    0 
    d x

    (x+1)(x+2)
    ,
    by considering


    (⎜)

    log z

    (z+1)(z+2)
    d z,
    using the integral path discussed in class. No other method is accepted. You have to show the logic and derivations.
    1. Identify the order of singularity at z=0 for
      ez − 1

      (1 − cos z)3
      .
    2. Find z that makes 1z=−1 possible.
    3. Evaluate

      (⎜)

      1

      z − 1
      dz
      where the integral path is a rectangle whose corners are −1, +2, 2 + i and −1 + i ccw ?
    4. Map a circle defined by |z| = 2 in the z plane to the w plane by w = [1/(z−2)].
Solution
  1. Start with the sum of a geometric series up to and including the zn−1 term as
    1+ z + z2 +z3 + …+ zn−1 = 1−zn

    1−z
    .
    Note that
    sin θ+ sin 2θ+sin 3θ+…+sin (n−1)θ,
    is the imaginary part of
    1+eiθ+ei+ …+ e(n−1)θi.
    Substitute z=eiθ into the above to get
    1+eiθ+ei+ …+ e(n−1)θi
    =
    1−en θi

    1−eiθ
    =
    (1−en i θ)(1−eiθ)

    (1−eiθ)(1−eiθ)
    =
    1−eiθen i θ+e(n−1)i θ

    1−2 cos θ+ 1
    =
    (Real part) + i × sin θ− sin n θ+ sin (n−1)θ

    2(1−cos θ)
    .
    Therefore,
    sin θ+ sin 2θ+ …+sin (n−1)θ = sin θ− sin n θ+ sin (n−1)θ

    2(1−cos θ)
    .
    1. From ux=vy,
      u

      x
      = −sin x (ey+ey) ⇒ u=cos(x) (ey+ey)+ g(y),
      From uy=−vx,
      cos(x) (eyey) +g′(y) = − (−cos(x) (−ey+ey)) ⇒ g′(x)=const.
      Therefore,
      u = cos(x) (ey+ey).

    2. u + i v
      =
      cos(x)(ey+ey) + i sin(x)(−ey+ey)
      =
      ey (cos(x)− i sin(x))+ey(cos(x)+i sin(x))
      =
      ey eix+eyeix
      =
      eix+y+eixy
      =
      ei(x+iy)+ ei (x+iy)
      =
      eiz+eiz
      =
      2 cos(z).


  2. (⎜)

    log z

    (z+1)(z+2)
    dz
    =
    2 πi (Res(eπi)+Res(2eπi))
    =
    2 πi
    πi

    1
    + log 2 + πi

    −1

    =
    −2 πi log 2.
    On the other hand,

    (⎜)

    log z

    (z+1)(z+2)
    dz
    =

    R

    ϵ 
    log x

    (x+1)(x+2)
    dx +


    R 
    +
    ϵ

    R 
    log(e2 πix)

    (x+1)(x+2)
    dx +


    ϵ 
    =



    0 
    log x

    (x+1)(x+2)
    dx+
    0

     
    log(e2 πix)

    (x+1)(x+2)
    dx
    =



    0 
    log x − log x − 2 πi

    (x+1)(x+2)
    dx
    =
    −2 πi


    0 
    1

    (x+1)(x+2)
    dx.
    Therefore,



    0 
    1

    (x+1)(x+2)
    dx = log 2.
    1. At z = 0, ez −1  ∼ z and 1 − cos z  ∼ [(z2)/2] so (ez − 1)/(1 − cos z)3  ∼ [8/(z5)], i.e. the fifth order.
    2. 1z=−1 is equivalent to e2 n πi z=e(π+2 m π)i from which
      z= 1+2m

      2n
      .
    3. Note that z = 1 lies on the integral path so its residue should be counted as one half.
      I = πi.
    4. Solving for z yields z = (1 + 2 w)/w, so |z| = 2 is transformed to
      | 1 + 2 w

      w
      | = 2,
      which is equivalent to
      | w + 1

      2
      | = | w |,
      i.e.
      u = − 1

      4
      .



File translated from TEX by TTH, version 4.03.
On 05 Mar 2023, 22:24.