ME5332 FINAL EXAMINATION
02:00-03:30PM, May 7, 2021
2
  1. Find the fluid velocity components (u,v) for a complex potential function given as
    f(z) = z + i

    z
    .
  2. Approximate ex by d1 + d2 x over [0, 1] using the least square method.
  3. Obtain the first two ON functions, (e1, e2), over [0, 2] by the Gram-Schmidt procedure for a1 = 1 and a2 = x where the inner product is defined as

    (f, g) =
    2

    0 
    x f(x) g(x) dx.
  4. Using (e1, e2) in Problem 3, expand f(x)=x3 by a linear combination of e1 and e2 over [0, 2].
  5. Find the eigenvalues and eigenfunctions for
    L en = λn en,     L ≡ − d2

    dx2
    ,

    en′(−1) = en(0)=0.
  6. Solve
    u"(x)=x,    u′(−1)=u(0)=0,
    using the eigenfunction expansion method and write down the first two terms.
  7. Find a one-term approximate solution to the differential equation,
    L u = 1,     L d2

    dx2
    +x,     u(0) = u(1) = 0,
    (u"+x u=1) using the Galerkin method. Choose a base function which vanishes at x = 0, 1.
  8. Using the Neumann series approach, compute A−1 where
    A



    1
    −1
    1
    0
    1
    1
    0
    0
    1




    .
  9. Solve the Laplace equation,
    2 u

    x2
    +2 u

    y2
    = 0,

    {(x,y),0 ≤ x ≤ 1, −∞ < y ≤ 0 }
    with the boundary condition shown by the eigenfunction expansion method. 2021_finala_1.jpg
  10. Rewrite
    u"(x)+ ex u(x) = x,     u(0)=u(1)=0,
    in a weak form.


Solution
1.
u=1− 2 xy

(x2+y2)2
,     v = x2y2

(x2+y2)2
.
2. Note that when the distance is minimized,
(exd1d2 x, 1)=0,    (exd1d2 x, x)=0,
so
d1 d2

2
+e−1 = 0,     1

6
(−3 d1−2 d2+6)=0,
from which
d1 = 2 (2 e−5) ∼ 0.873127,     d2=6 (3−e)  ∼ 1.69031.
3.
e1 = a1

||a1||
= 1

√2
.

e2′ = a2 − (a2, e1) e1 = x − (x, 1

√2
) 1

√2
= x 4

3
.
and
||e2′||2 = (e2′, e2′) = (x 4

3
, x 4

3
) = 2

3
,
so

e1 = 1

√2
,     e2 = 3x − 4

2
.
*.
x3  ∼ c1 e1 + c2 e2,

c1 = (x3, e1)= 16√2

5
 ∼ 4.52548,     c2=(x3, e2) = 16

5
.
5.
en(x) = √2 sin


 

λn
 
x
,     λn =
(n+ 1

2

2

 
.
6.
xn = (x, en) = 4 √2 (−1)n

(2 πn+π)2
.

~
u
 
=
32 sin
πx

2


π4
32 sin
3 πx

2


81 π4
 ∼ 0.328511 sin
πx

2

− 0.004055 sin
3 πx

2

.
Note: The exact solution is
u= 1

6
(3 xx3).
Here is a comparison (no difference):
2021_finala_2.jpg
7. Choose e(x) = x (1−x). Then e′(x) = 1 − 2 x and e"(x) = −2.
L e = e"+ x e = −2 + x2 (1 − x),     (L e , e) =
1

0 
(−2 + x2x3) x(1−x) dx = −19

60
.

(e, c) =
1

0 
x (1−x) d x = 1

6
,
so
−19

60
u1 = 1

6
u1 = − 10

19
.
hence
~
u
 
= − 10

19
x(1−x)  ∼ − 0.526316x(1−x).
8.
A =



1
−1
1
0
1
1
0
0
1




= I + M     where M =



0
−1
1
0
0
1
0
0
0




.
Note
M2 =



0
0
−1
0
0
0
0
0
0




   M3 = 0,
so

A−1 = (I + M)−1 = IM + M2 =



1
1
−2
0
1
−1
0
0
1




.
9. Note that the eigenfunction and the eigenvalues are

en(x) = √2 sin 

 

λn
 
x,     λn = (n π)2.

u(x, y) =
(f, en) e√{λn} y en(x),
where
(f, en)=
1

0 
f(x) en(x) dx.
10.

1

0 
uvdx +
1

0 
ex u v dx =
1

0 
x v dx.



File translated from TEX by TTH, version 4.03.
On 19 Apr 2023, 19:12.