HW #07
Due: 11/03/2025
1. Parseval's identity of the Fourier sine series1 is expressed as

π

−π 
{f(x)}2 dx = π

m=1 
bm2,
where f(x) is an odd function and bm is the Fourier sine coefficient.

    (1) Prove the above identity.
    (2) Obtain the Fourier series of f(x) = x (−π < x < π).
    (3) Applying Parseval's identity to the above, obtain
    1 + 1

    22
    + 1

    32
    + 1

    42
    + …
2. Solve the following integral equation for u(x).




−∞ 
u(xy) u(y) d y = ex2.
Hint:
F(ea x2 ) =   ⎛


π

a
 
 e−ω2/(4 a).
Solution
1. (a)

π

−π 
{f(x)}2 dx =

m=1 


n=1 
bm bn
π

−π 
sin m x  sin n x d x = π

m=1 
bm2.
Note that


π

−π 
sin m x  sin n x d x =



π
m = n
0
mn
(b)
bm = 1

π

π

−π 
x sin m x d x = − 2 (−1)m

m
,
so
f(x) = (−2)

m=1 
(−1)m

m
sin m x.
(c)

π

−π 
x2 dx = 4 π

m=1 
1

m2
,
hence


m=1 
1

m2
= π2

6
.
2. The given equation is be written as

u(x) * u(x) = ex2,
where * is the Fourier convolution.
Fourier transform both sides of the above to get
{U(ω)}2 =

 

π
 
e−ω2/4.
Therefore,

U(ω) =   ⎛




 

π
 
e−ω2/4
 
= π1/4 e−ω2/8.
The inverse Fourier transform is thus

u(x) = F−1( π1/4 e−ω2/8) = √2

π1/4
e−2 x2.

Footnotes:

1
f(x) =

m=1 
bm sin m x,     bm = 1

π

π

−π 
f(x) sin m x dx.



File translated from TEX by TTH, version 4.03.
On 06 Nov 2025, 12:31.