HW #06
Due: 10/27/2025
1.
password2.jpg
What is the 10 digit WiFi password? Penalty if you actually compute the integral.


2.
By expanding x4 by the Fourier series, obtain



n=1 
1

n4
.
Hint: You can use the result of


n=1 
1

n2
from #14 lecture
Integrate with respect to
from to .

Examples: Cos[x], Sin[m x], Exp[x], Pi, Infinity, Tan[x] etc..



3.
Solve the following differential equation using the Fourier series and plot the first three non-zero terms over −π < x < π.

u"(x) = f(x),     u(−π)=0,     u(π) = 0,
where
f(x) =



−1
    −π < x < 0
1
    0 < x < π.
Solution



    1. Note that x3 cos [(x)/2] √{4−x2} is an odd function so its integral from −2 to 2 is zero. The integration of √{4−x2} from -2 to 2 is the upper half of a circle centered at 0 with a radius 2. Hence it is 2 ×2 ×π/2 = 2π.

    3141592653

    2.
    By expanding x4 by a Fourier series, obtain


    n=1 
    1

    n4
    Solution
    a0 = 1

    π

    π

    −π 
    x4 dx = 2 π4

    5
    ,

    am = 1

    π

    π

    −π 
    x4 cos m x dx = − 48 (−1)m

    m4
    + 8 π2 (−1)m

    m2
    so
    f(x) = π4

    5
    +

    m=1 

    48 (−1)m

    m4
    + 8 π2 (−1)m

    m2

    cos m x.
    Substitute x = π in the both sides gives
    π4
    =
    π4

    5
    +

    m=1 

    48

    m4
    + 8 π2

    m2

    (1)
    =
    π4

    5
    − 48

    m=1 
    1

    m4
    + 8 π2

    m=1 
    1

    m2
    (2)
    Using


    m=1 
    1

    m2
    = π2

    6
    ,
    the above can be solved for


    m=1 
    1

    m4
    = π4

    90
    .

    3,

    f(x) =



    −1
        −π < x < 0
    1
        0 < x < π
    (3)

    bm
    =
    1

    π

    π

    −π 
    f(x) sin  mx dx
    =
    1

    π

    0

    −π 
    (−1) sin  mx dx + 1

    π

    π

    0 
    (+1) sin  mx dx
    =
    2(1−(−1)m)

    m π
    .
    (4)
    so
    f(x) =

    m=1 
    2(1−(−1)m)

    m π
    sin m x.
    Express the unknown function, u(x), and the known function by Fourier series as
    u(x) =

    m=1 
    um sin m x,
    then,
    u"(x)
    =


    m=1 
    m2  um  sin m x
    f(x)
    =


    m=1 
    2(1−(−1)m)

    m π
    sin m x.
    (5)
    from which
    um = − 2(1−(−1)m)

    m3 π
    .
    (6)
    Therefore,
    u(x) =

    m=1 
    2(1−(−1)m)

    m3 π
    sin m x.
    The first three non-zeo terms of the Fourier series is
    ~
    u
     

    3 
    = − 4 sin(x)

    π
    4 sin(3 x)

    27 π
    4 sin(5 x)

    125 π
    .
    (7)
    hw_05_sol_1.jpg



File translated from TEX by TTH, version 4.03.
On 29 Oct 2025, 11:35.