HW #01
Due: 09/01/2025



1. Derive the relationship between the backward difference operator, ~∆ ff(x) − f(xh), and the differential operator, D ff′(x), and numerically obtain f′(1.0) from the table below using all the available information:

x f(x)
0.201.22140276
0.251.28402542
0.301.34985881
0.351.41906755
0.401.49182470
0.451.56831219
0.501.64872127
0.551.73325302
0.601.82211880
0.651.91554083
0.702.01375271
0.752.11700002
0.802.22554093
0.852.33964685
0.902.45960311
0.952.58570966
1.002.71828183


2.
f(x) ≡



x

1 + exp(1/x)
    (x ≠ 0)
0
    (x = 0).

    (a) Is f(x) continuous at x=0 ? State your rationale.
    (b) Is f(x) differentiable at x=0 ? State your rationale.
HW 1 Solution
1.

~

 
f
=
f(x) − f(xh)
=
f(x) −
f(x) − h f′(x) + h2

2
f"(x) − …
=
( 1 − eh D) f.
Therefore,

~

 
= 1 − eh D
(1)
or
D
=
1

h
ln (1 −
~

 
)
=
1

h


~

 
+
~

 
2
 

2
+
~

 
3
 

3
+
~

 
4
 

4
+ …

.
hw_01_sol_1.jpg
The values of f(x) is based on f(x) = ex. Therefore, f′(1)=f(1)=2.71828. Your answer must match this value.


2.
(a)

lim
x → +0 
x

1 + e1/x
=
0,

lim
x → −0 
x

1 + e1/x
=
0
so


lim
x → 0 
f(x) = f(0),
hence, f(x) is continuous at x = 0. Note that


lim
x→ +0 
e1/x = ∞,       
lim
x→ −0 
e1/x = 0.
(b)
f′(0) =
lim
h → 0 
f(0 + h) − f(0)

h
=
lim
h → 0 
1

1 + e1/h
but


lim
h → +0 
1

1 + e1/h
= 0,       
lim
h → −0 
1

1 + e1/h
= 1,
so f(x) is NOT differentiable at x = 0.
Here is a graph of f(x) around x=0. It is seen that f(x) is continuous (no hole) but not differentiable (not smooth) at x=0.
hw_01_sol_2.jpg



File translated from TEX by TTH, version 4.03.
On 03 Sep 2025, 12:55.