#12 (10/02/2024)

Line integrals

Examples:

    (1)
    lineint_1.jpg

    W =
    (1,2)

    (0,0) 
    F·dr,
    where

    F
    (x y, x2),
    (1)
    dr
    =
    (dx, dy).
    (2)

    W
    =

    x y dx + x2 dy
    =

    x (2x) dx + x2 2 dx
    =

    1

    0 
    (2x2 + 2x2) dx
    =

    1

    0 
    4x2 dx
    =
    4

    3
    .
    (3)

    (2)
    lineint_2.jpg

    W
    =

    x y dx + x2 dy
    =

    x (2 x2) dx + x2 (4x dx)
    =

    1

    0 
    (2 x3 + 4 x3) dx
    =

    1

    0 
    6 x3 dx
    =
    3

    2
    .
    (4)
    It can be seen that the values of line integrals generally depend on the integral paths.
    (3)
    lineint_3.jpg

    F ≡ (2 x y, x2 − 1).

    W
    =

    2 x y dx + (x2 − 1) dy
    =

    5/2π

    0 
    { 2 (rcosθ)(rsinθ) (dr cosθ− r sinθdθ)
    + ((rcosθ)2 − 1) (dr sin θ+ r cos θdθ) }
    =
    =
    −5/2 π,
    (5)
    where
    x
    =
    r cos θ,
    (6)
    y
    =
    r sin θ,
    (7)
    dx
    =
    dr cos θ− r sin θdθ,
    (8)
    dy
    =
    dr sin θ+ r cos θdθ,
    (9)
    was used.
    Alternatively, if one defines
    G(x, y) ≡ x2 yy,1


    F·dr
    =

    dG
    =
    [G](x,y)=(0, 0)(x,y)=(0, 5/2π)
    =
    5

    2
    π.
    While the line integrals of Examples 1 and 2 depend on the integral path, the line integral of Example 3 is independent of the path. This difference will be clarified in the next section.

Stokes' theorem



(⎜)



S 
F·dr =



S 
m·(∇×F)dS.
(10)
stokes.jpg
Proof
From the figure above,
dr = m×n dr,
so it follows that

(⎜)



S 
F ·dr
=

(⎜)



S 
F ·(m ×n) dr
=
(scalar triple product)
=

(⎜)



S 
m ·(n ×F) dr
=
(Gauss theorem)
=




S 
m ·(∇×F) dS.
(11)


Example The velocity field of a vortex that rotates with the angular velocity of ω is given as
v
=
r ωeθ
=
r ω



−sinθ
cosθ
0




=




−ωy
ωx
0




,
(12)
so
∇×v = 2 ωk.
(13)
If F=(P, Q, 0), m=(0,0,1) and the Stokes' theorem is rewritten as

(⎜)



S 
Pdx + Qdy =



S 

Q

x
P

y

dA.
(14)

Irrotational Field

Definition: If the vector field, v, satisfies ∇×v=0, v is called an irrotational field.
Theorem: The following four statements are all equivalent.

    (1)
    v = ∇ϕ.

    (2)
    ∇×v = 0.

    (3)

    (⎜)

    v·dr = 0.

    (4)

    v·dr,
    is independent of the integral path.
  1. 1 → 2.
    ∇×(∇ϕ)=0
  2. 2 → 3

    (⎜)



    S 
    v·dr =



    S 
    m·(∇×v) dA = 0
  3. 3 → 4 (shown in class)
  4. 4 → 1
    Define ϕ as
    ϕ(r) ≡
    r

    a 
    v·dr,
    then

    ϕ(r+dr)−ϕ(r) ≈ ∇ϕ·dr2
    (15)
    On the other hand,

    ϕ(r+dr)−ϕ(r)
    =

    r+dr

    a 
    v·dr
    r

    a 
    v·dr
    v ·dr,
    (16)
    so
    v = ∇ϕ.


Footnotes:

1
dG = G

x
dx + G

y
dy = 2 x y dx + (x2 − 1) dy.
2
ϕ(x+dx, y+dy, z+dz)−ϕ(x, y, z)
 ∼ 
ϕ(x, y, z)+ ∂ϕ

x
dx+ ∂ϕ

y
dy+ ∂ϕ

z
dz − ϕ(x, y, z)
=
∂ϕ

x
dx+ ∂ϕ

y
dy+ ∂ϕ

z
dz
=
∇ϕ·dr.



File translated from TEX by TTH, version 4.03.
On 06 Oct 2024, 12:16.