| (1) |
| (2) |
| (3) |
| (4) |
| (5) |
| (6) |
|
| (9) |
|
n | 10 | 12 | 14 | 16 | 18 | 20 |
Time | 0.4 sec. | 1 min. | 3.6 hrs. | 41 days | 38 years | 16,000 years |
| (13) |
| (14) |
| (15) |
|
| (16) |
Ref. line number | x | y | z | = | Comment |
(1) | 2 | 3 | 4 | 6 | |
(2) | 3 | 5 | 2 | 5 | |
(3) | 4 | 3 | 30 | 32 | |
(4) | 1 | 1.5 | 2 | 3 | (1)÷2 |
(5) | 3 | 5 | 2 | 5 | |
(6) | 4 | 3 | 30 | 32 | |
(7) | 1 | 1.5 | 2 | 3 | |
(8) | 0 | 0.5 | -4 | -4 | (5)−(4)×3 |
(9) | 0 | -3 | 22 | 20 | (6)−(4)×4 |
(10) | 1 | 1.5 | 2 | 3 | |
(11) | 0 | 1 | -8 | -8 | (8)÷0.5 |
(12) | 0 | -3 | 22 | 20 | |
(13) | 1 | 0 | 14 | 15 | (10)−(11)×1.5 |
(14) | 0 | 1 | -8 | -8 | |
(15) | 0 | 0 | -2 | -4 | (12)−(11)×(−3) |
(16) | 1 | 0 | 14 | 15 | |
(17) | 0 | 1 | -8 | -8 | |
(18) | 0 | 0 | 1 | 2 | (15)÷(−2) |
(19) | 1 | 0 | 0 | -13 | (16)−(18)×14 |
(20) | 0 | 1 | 0 | 8 | (17)− (18)×(−8) |
(21) | 0 | 0 | 1 | 2 | |
|
| (17) |
|
| (19) |
#include <stdio.h> #define N 3 int main() { double a[N][N+1]={{2, 3, 4, 6},{3, 5, 2, 5},{4, 3, 30, 32}}; double pivot,d; int i,j,k; for(k=0; k<N; k++) { pivot=a[k][k]; for(j=k; j<N+1; j++) a[k][j]=a[k][j]/pivot; for(i=0; i<N; i++) { if(i != k) { d=a[i][k]; for(j=k; j<N+1; j++) a[i][j]=a[i][j]-d*a[k][j]; } } } for(i=0; i<N; i++) printf("x[%d]=%lf\n", i+1, a[i][N]); return 0; } |
| (20) |
| (21) |
| (22) |
| (23) |
| (24) |
| (25) |
| (26) |
| (27) |
| (28) |
| (29) |
| (30) |
| (31) |
| (32) |
| (33) |
| (34) |
| (35) |
#include <stdio.h> int main() { double x, y, z; int i,n; x=y=z=0.0; printf("Enter # of iteration = "); scanf("%d", &n); for (i=0;i<n;i++) { x = (10-y-2*z)/7; y = (8-x-3*z)/8.0; z = (6-2*x-3*y)/9.0; } printf("x = %lf, y= %lf, z=%lf\n", x,y,z); return 0; } |
| (36) |
#include <stdio.h> int main() { double x, y, z; int i,n; x=y=z=0.0; printf("Enter # of iteration = "); scanf("%d", &n); for (i=0;i<n;i++) { x = (10-10*y-2*z)/1.0; y = (8-3*x-3*z)/0.5; z = (6-2*x-3*y)/1.0; } printf("x = %lf, y= %lf, z=%lf\n", x,y,z); return 0; } |
C:\gcc-2.95.2>a Enter # of iteration = 10 x = 2459960279391766.000000, y= -24122215777772912.000000, z=67446726774535208.000000 C:\gcc-2.95.2>a Enter # of iteration = 11 x = 106328704228658720.000000, y= -1042652586019163500.000000, z=2915300349600173100.000000 C:\gcc-2.95.2>a Enter # of iteration = 12 x = 4595925160991289300.000000, y= -45067353063548772000.000000, z=126010208868663740000.000000In general, the Gauss-Seidel method works when the coefficients of the diagonal terms are larger than the others. The best part of the Gauss-Seidel metho is that it also works for a set of non-linear equations (see the current HW).