#14 (03/17/2025)

Solving simultaneous equations


A x = c,
(1)
or







a11
a12
a1n
a21
a22
a2n
:
:
:
:
an1
an2
ann












x1
x2
:
xn






=





c1
c2
:
cn






,
(2)
or









a11 x1 + a12 x2 + a13 x3 + …+ a1nxn = c1
a21 x1 + a22 x2 + a23 x3 + …+ a2nxn = c2
a31 x1 + a32 x2 + a33 x3 + …+ a3nxn = c3
……
an1 x1 + an2 x2 + an3 x3 + …+ annxn = cn
(3)
For many problems in engineering/science, the size of the matrix A can easily go up to n=1,000,00.

Determinant

  1. 2 ×2 matrices



    a11
    a12
    a21
    a22.



    a11 a22a12 a21
    (4)
  2. 3 ×3 matrices




    a11
    a12
    a13
    a21
    a22
    a23
    a31
    a32
    a33




    a11 a22 a33 + a12 a23 a31+ a21 a32 a13a13 a22a31a12 a21 a33a23 a32 a11
    (5)
  3. The determinant of n ×n (n > 3) matrices can be expressed similar to the above. It consists of n! terms each of which is a product of n variables.

Some properties of determinants

  1. | A B | = | A | | B |
  2. | I | = 1 where I is the identity matrix.
  3. | A |=0 ⇒ A is singular.

Determinant/Cramer's rule

Solving
a11 x1 + a12 x2
=
c1
a21 x1 + a22 x2
=
c2
(6)
yields

x1
=
c1 a22c2 a12

a11 a22a12 a21
=



c1
a12
c2
a22







a11
a12
a21
a22



(7)
x2
=
c2 a11c1 a21

a11 a22a12 a21
=



a11
c1
a21
c2







a11
a12
a21
a22



(8)
Similarly, for three simultaneous equations,

a11 x1 + a12 x2 + a13 x3
=
c1
a21 x1 + a22 x2 + a23 x3
=
c2
a31 x1 + a32 x2 + a33 x3
=
c3
(9)
the solution is expressed as

x1
=




c1
a12
a13
c2
a22
a23
c3
a32
a33









a11
a12
a13
a21
a22
a23
a31
a32
a33




,
(10)
x2
=




a11
c1
a13
a21
c2
a23
a31
c3
a33









a11
a12
a13
a21
a22
a23
a31
a32
a33




,
(11)
x3
=




a11
a12
c1
a21
a22
c2
a31
a32
c3









a11
a12
a13
a21
a22
a23
a31
a32
a33




.
(12)
The above formulas are called Cramer's rule and in general can be extended to higher order matrices. However, it's not practical to use Cramer's rule for a set of more than 4 simultaneous equations. The number of multiplications required for Cramer's rule for n simultaneous equations is n! (n−1) (n+1). For n=10, this amounts to 3,628,800.
Approximate computational time for n simultaneous equations with a 100 MFLOPS computer (an old PC) using Cramer's rule is estimated as shown in Table .1
Table 1: Time required for Cramer's rule
n 10 12 14 16 18 20
Time 0.4 sec. 1 min. 3.6 hrs. 41 days 38 years 16,000 years

Gauss-Jordan elimination method

The linearity principle:

a11 x1 + a12x2 + …+a1nxn
=
c1
a21 x1 + a22x2 + …+a2nxn
=
c2,
(13)

1 a11 + λ2 a12)x1+(λ1 a21 + λ2 a22)x2+…+(λ1 a1n + λ2 a2n)xn = λ1 c1 + λ2 c2.
(14)
Example

2x+3y+4z = 6
3x+5y+2z = 5
4x+3y+30z=32.




(15)


1x+0y+0z = ?
0x+1y+0z = ?
0x+0y+1z = ?.




(16)
Ref. line number x y z = Comment
(1) 2 3 4 6
(2) 3 5 2 5
(3) 4 3 30 32
(4) 1 1.5 2 3 (1)÷2
(5) 3 5 2 5
(6) 4 3 30 32
(7) 1 1.5 2 3
(8) 0 0.5 -4 -4 (5)−(4)×3
(9) 0 -3 22 20 (6)−(4)×4
(10) 1 1.5 2 3
(11) 0 1 -8 -8 (8)÷0.5
(12) 0 -3 22 20
(13) 1 0 14 15 (10)−(11)×1.5
(14) 0 1 -8 -8
(15) 0 0 -2 -4 (12)−(11)×(−3)
(16) 1 0 14 15
(17) 0 1 -8 -8
(18) 0 0 1 2 (15)÷(−2)
(19) 1 0 0 -13 (16)−(18)×14
(20) 0 1 0 8 (17)− (18)×(−8)
(21) 0 0 1 2
Finally we obtain
x = −13,     y=8,     z=2.
The number of multiplications required for the Gauss-Jordan elimination method is about n3. For n=10, this amounts to 1,000. Compare this number with the one required for Cramer's rule.

Inverse matrix by the Gauss-Jordan elimination method (optional)

Apply the Gauss-Jordan elimination method for
( A | I)
(17)
i.e.





2
3
4
1
0
0
3
5
2
0
1
0
4
3
32
0
0
1








1
2/3
2
1/2
0
0
0
1/2
−4
−3/2
1
0
0
−3
22
−2
0
1








1
0
14
5
−3
0
0
1
−8
−3
2
0
0
0
−2
−11
6
1








1
0
0
−72
39
7
0
1
0
41
−22
−4
0
0
1
11/2
−3
−1/2




(18)
We thus obtain
A−1 =



−72
39
7
41
−22
−4
11/2
−3
−1/2




(19)

Implementation

#include <stdio.h>
#define N 3
int main()
{
 double a[N][N+1]={{2, 3, 4, 6},{3, 5, 2, 5},{4, 3, 30, 32}};
  double pivot,d;
  int i,j,k;

for(k=0; k<N; k++)
{
 pivot=a[k][k];

 for(j=k; j<N+1; j++) a[k][j]=a[k][j]/pivot;
 for(i=0; i<N;  i++)
  {
    if(i != k)
     {
       d=a[i][k]; 
        for(j=k; j<N+1; j++) a[i][j]=a[i][j]-d*a[k][j];
     }
   }
}

for(i=0; i<N; i++) printf("x[%d]=%lf\n", i+1, a[i][N]);
return 0;
}

LU decomposition (optional)

Any matrix, A, can be uniquely factorized as

A = L U,
(20)
where

L =






1
0
0
0
l21
1
0
0
l31
l32
1
0
:
:
:
···
:
ln1
ln2
ln3
1







,   U =






u11
u12
u13
u1n
0
u22
u23
u2n
0
0
u33
u3n
:
:
:
···
:
0
0
0
unn







.
(21)
The matrix, L, is a lower triangular matrix and the matrix, U, is an upper triangular matrix. Note that the diagonal elements of L are set to be 1. This decomposition is called LU decomposition (or LU factorization) and provides an effective way of solving simultaneous equations which is more efficient than the Gauss-Jordan elimination method.
The decomposition above is unique as it is possible to find L and U directly as







1
0
0
0
l21
1
0
0
l31
l32
1
0
l41
l42
l43
1












u11
u12
u13
u14
0
u22
u23
u24
0
0
u33
u34
0
0
0
u44






=





a11
a12
a13
a14
a21
a22
a23
a24
a31
a32
a33
a34
a41
a42
a43
a44






.
(22)
Writing each element explicitly gives







u11 = a11,
u12=a12,
u13=a13,
u14=a14
l21 u11 = a21,
l21 u12+u22 = a22,
l21 u13+u23 = a23,
l21 u14+u24 = a24
l31u11 = a31,
l31u12+l32u22 = a32,
l31u13+l32u23+u33 = a33,
l31u14+l32u24+u34 = a34
l41u11 = a41,
l41u12+l42u22 = a42,
l41u13+l42u23+l43u33 = a43,
l41u14+l42u24+l43u34+u44 = a44,
(23)
from which one can solve the unknowns, lij and uij, as











u11=a11,
u12=a12,
u13=a13,
u14=a14
l21= a21

u11
,
u22 = a22l21u12,
u23=a23l21 u13,
u24=a24l21u14
l31= a31

u11
,
l32= a32l31u12

u22
,
u33=a33l31 u13l32 u23,
u34=a34l31 u14l32 u24
l41= a41

u11
,
l42 = a42l41u12

u22
,
l43= a43l41u13l42u23

u33
,
u44=a44l41u14l42u24l43u34.
(24)
Note that the immediate results for uij and lij must be used to solve for the next result.
To solve
A x = L U x = c,
(25)
  1. Solve L y = c first.
  2. Then, solve U x = y.
Finding L and U from A requires less effort than finding A−1 and can accomplish the same goal as finding A−1.







1
0
0
0
l21
1
0
0
l31
l32
1
0
l41
l42
l43
1












y1
y2
y3
y4






=





c1
c2
c3
c4






(26)
This can be solved easily as







y1 = c1
l21 y1 + y2 = c2
l31 y1 + l32y2 + y3 = c3
l41 y1 +l42 y2 + l43y3 + y4 = c4
(27)
from which one obtains







y1 = c1
y2 = c2l21 y1
y3 = c3l31 y1l32y2
y4 = c4l41 y1l42 y2l43y3
(28)
For U x=y,







u11
u12
u13
u14
0
u22
u23
u24
0
0
u33
u34
0
0
0
u44












x1
x2
x3
x4






=





y1
y2
y3
y4






(29)
First







u11 x1 + u12 x2 + u13 x3 + u14 x4 = y1
u22 x2+u23x3 + u24x4 = y2
u33 x3 + u34x4 = y3
u44 x4=y4
(30)
from which one obtains













x4 = y4

u44
x3 = y3u34x4

u33
x2 = y2u23x3u24x4

u22
x1 = y1u11 x1u12 x2u13 x3

u11
(31)
This procedure is called backward substitution.
It can be shown that the number of operations (multiplications, divisions) to decompose A into A = LU is about n3/3 and to obtain x from Ly=c and Ux=y, n2 is required so the total number of operations is about n3/3 which is 1/3 of the number required for the Gauss-Jordan elimination method.

Notes

  1. If A is a symmetric matrix (aij=aji), LU-decomposition is called the Cholesky decomposition. The number of operations required for the Cholesky decomposition is n3/6.
  2. If A is a sparse matrix, so are L and U.
  3. If A is a triangular diagonal matrix (typical of the finite element method), so are L and U.

Gauss-Seidel method (Important)

If the diagonal elements of the matrix, A, are generally larger than non-diagonal elements, the linear equation, A x = c, can be solved by an iterative method called the Gauss-Seidel method.
Example:





7x+y+2z
=
10
x+8y+3z
=
8
2x+3y+9z
=
6.
(32)





x
=
(10−y−2z)/7
y
=
(8−x−3z)/8
z
=
(6−2x−3y)/9.
(33)





xn+1
=
(10−yn−2zn)/7
yn+1
=
(8−xn−3zn)/8
zn+1
=
(6−2xn−3yn)/9,
(34)
with x0 = y0 = z0 = 0 as the initial approximation. This scheme is also called the Jacobi method. A slightly better iteration scheme is to use the most immediate values for the next approximation, i.e.





xn+1
=
(10−yn−2zn)/7
yn+1
=
(8−xn+1−3zn)/8
zn+1
=
(6−2xn+1−3yn+1)/9,
(35)
This scheme is called the Gauss-Seidel iterative method. It is easy to implement this method:
#include <stdio.h>
int main()
{
double x, y, z;
int i,n;

x=y=z=0.0;

printf("Enter # of iteration = ");
scanf("%d", &n);

for (i=0;i<n;i++)
{
x = (10-y-2*z)/7;
y = (8-x-3*z)/8.0;
z = (6-2*x-3*y)/9.0;
}

printf("x = %lf, y= %lf, z=%lf\n", x,y,z);
return 0;
}
The Gauss-Seidel method does not always work. Consider the following simultaneous equstions:





x+10y+2z
=
10
3x+0.5y+3z
=
8
2x+3y+z
=
6.
(36)
The implementation of the Gauss-Seidel iterative method for the equations above is:
#include <stdio.h>
int main()
{
double x, y, z;
int i,n;

x=y=z=0.0;

printf("Enter # of iteration = ");
scanf("%d", &n);

for (i=0;i<n;i++)
{
x = (10-10*y-2*z)/1.0;
y = (8-3*x-3*z)/0.5;
z = (6-2*x-3*y)/1.0;
}

printf("x = %lf, y= %lf, z=%lf\n", x,y,z);
return 0;
}
C:\gcc-2.95.2>a
Enter # of iteration = 10
x = 2459960279391766.000000, y= -24122215777772912.000000, z=67446726774535208.000000

C:\gcc-2.95.2>a
Enter # of iteration = 11
x = 106328704228658720.000000, y= -1042652586019163500.000000, z=2915300349600173100.000000

C:\gcc-2.95.2>a
Enter # of iteration = 12
x = 4595925160991289300.000000, y= -45067353063548772000.000000, z=126010208868663740000.000000

In general, the Gauss-Seidel method works when the coefficients of the diagonal terms are larger than the others.
The best part of the Gauss-Seidel metho is that it also works for a set of non-linear equations (see the current HW).


Footnotes:

1Dahmen and Reusken, Numerik für Ingenieure und Naturwissenschaftler, Springer, 2006.


File translated from TEX by TTH, version 4.03.
On 16 Mar 2025, 20:32.